Global N6-Methyladenosine Profiling Revealed the Tissue-Specific Epitranscriptomic Regulation of Rice Responses to Salt Stress

Author:

Wang Yinxiao,Du Fengping,Li Yingbo,Wang Juan,Zhao Xiuqin,Li Zhikang,Xu Jianlong,Wang Wensheng,Fu BinyingORCID

Abstract

N6-methyladenosine (m6A) methylation represents a new layer of the epitranscriptomic regulation of plant development and growth. However, the effects of m6A on rice responses to environmental stimuli remain unclear. In this study, we performed a methylated-RNA immunoprecipitation sequencing analysis and compared the changes in m6A methylation and gene expression in rice under salt stress conditions. Salt stress significantly increased the m6A methylation in the shoots (p value < 0.05). Additionally, 2537 and 2304 differential m6A sites within 2134 and 1997 genes were identified in the shoots and roots, respectively, under salt stress and control conditions. These differential m6A sites were largely regulated in a tissue-specific manner. A unique set of genes encoding transcription factors, antioxidants, and auxin-responsive proteins had increased or decreased m6A methylation levels only in the shoots or roots under salt stress, implying m6A may mediate salt tolerance by regulating transcription, ROS homeostasis, and auxin signaling in a tissue-specific manner. Integrating analyses of m6A modifications and gene expression changes revealed that m6A changes regulate the expression of genes controlling plant growth, stress responses, and ion transport under saline conditions. These findings may help clarify the regulatory effects of m6A modifications on rice salt tolerance.

Funder

National Natural Science Foundation of China

National Key Research and Development Program of China

Publisher

MDPI AG

Subject

Inorganic Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Computer Science Applications,Spectroscopy,Molecular Biology,General Medicine,Catalysis

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3