Gremlin-1 and BMP-4 Overexpressed in Osteoarthritis Drive an Osteochondral-Remodeling Program in Osteoblasts and Hypertrophic Chondrocytes

Author:

Pérez-Lozano Maria-LuisaORCID,Sudre Laure,van Eegher Sandy,Citadelle Danièle,Pigenet Audrey,Lafage-Proust Marie-Helène,Pastoureau PhilippeORCID,De Ceuninck Frédéric,Berenbaum Francis,Houard Xavier

Abstract

Osteoarthritis (OA) is a whole joint disease characterized by an important remodeling of the osteochondral junction. It includes cartilage mineralization due to chondrocyte hypertrophic differentiation and bone sclerosis. Here, we investigated whether gremlin-1 (Grem-1) and its BMP partners could be involved in the remodeling events of the osteochondral junction in OA. We found that Grem-1, BMP-2, and BMP-4 immunostaining was detected in chondrocytes from the deep layer of cartilage and in subchondral bone of knee OA patients, and was positively correlated with cartilage damage. ELISA assays showed that bone released more Grem-1 and BMP-4 than cartilage, which released more BMP-2. In vitro experiments evidenced that compression stimulated the expression and the release of Grem-1 and BMP-4 by osteoblasts. Grem-1 was also overexpressed during the prehypertrophic to hypertrophic differentiation of murine articular chondrocytes. Recombinant Grem-1 stimulated Mmp-3 and Mmp-13 expression in murine chondrocytes and osteoblasts, whereas recombinant BMP-4 stimulated the expression of genes associated with angiogenesis (Angptl4 and osteoclastogenesis (Rankl and Ccl2). In conclusion, Grem-1 and BMP-4, whose expression at the osteochondral junction increased with OA progression, may favor the pathological remodeling of the osteochondral junction by inducing a catabolic and tissue remodeling program in hypertrophic chondrocytes and osteoblasts.

Publisher

MDPI AG

Subject

Inorganic Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Computer Science Applications,Spectroscopy,Molecular Biology,General Medicine,Catalysis

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3