N-Acetylcysteine and Aripiprazole Improve Social Behavior and Cognition and Modulate Brain BDNF Levels in a Rat Model of Schizophrenia

Author:

Rogóż Zofia,Kamińska KingaORCID,Lech Marta Anna,Lorenc-Koci ElżbietaORCID

Abstract

Treatment of negative symptoms and cognitive disorders in patients with schizophrenia is still a serious clinical problem. The aim of our study was to compare the efficacy of chronic administration of the atypical antipsychotic drug aripiprazole (7-{4-[4-(2,3-dichlorophenyl)-1-piperazinyl] butoxy}-3,4-dihydro-2(1H)-quinolinone; ARI) and the well-known antioxidant N-acetylcysteine (NAC) both in alleviating schizophrenia-like social and cognitive deficits and in reducing the decreases in the levels of the brain-derived neurotrophic factor (BDNF) in the prefrontal cortex (PFC) and hippocampus (HIP) of adult Sprague-Dawley rats, that have been induced by chronic administration of the model compound L-buthionine-(S, R)-sulfoximine (BSO) during the early postnatal development (p5–p16). ARI was administered at doses of 0.1 and 0.3 mg/kg while NAC at doses of 10 and 30 mg/kg, alone or in combination. Administration of higher doses of ARI or NAC alone, or co-treatment with lower, ineffective doses of these drugs significantly improved social and cognitive performance as assessed in behavioral tests. Both doses of NAC and 0.3 mg/kg of ARI increased the expression of BDNF mRNA in the PFC, while all doses of these drugs and their combinations enhanced the levels of BDNF protein in this brain structure. In the HIP, only 0,3 mg/kg ARI increased the levels of both BDNF mRNA and its protein. These data show that in the rat BSO-induced neurodevelopmental model of schizophrenia, ARI and NAC differently modulated BDNF levels in the PFC and HIP.

Funder

the National Science Centre of Poland

Publisher

MDPI AG

Subject

Inorganic Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Computer Science Applications,Spectroscopy,Molecular Biology,General Medicine,Catalysis

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3