Abstract
Cargo transport within cells is essential to healthy cells, which requires microtubules-based motors, including kinesin. The C-terminal tails (E-hooks) of alpha and beta tubulins of microtubules have been proven to play important roles in interactions between the kinesins and tubulins. Here, we implemented multi-scale computational methods in E-hook-related analyses, including flexibility investigations of E-hooks, binding force calculations at binding interfaces between kinesin and tubulins, electrostatic potential calculations on the surface of kinesin and tubulins. Our results show that E-hooks have several functions during the binding process: E-hooks utilize their own high flexibilities to increase the chances of reaching a kinesin; E-hooks help tubulins to be more attractive to kinesin. Besides, we also observed the differences between alpha and beta tubulins: beta tubulin shows a higher flexibility than alpha tubulin; beta tubulin generates stronger attractive forces (about twice the strengths) to kinesin at different distances, no matter with E-hooks in the structure or not. Those facts may indicate that compared to alpha tubulin, beta tubulin contributes more to attracting and catching a kinesin to microtubule. Overall, this work sheds the light on microtubule studies, which will also benefit the treatments of neurodegenerative diseases, cancer treatments, and preventions in the future.
Funder
National Institutes of Health
Subject
Inorganic Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Computer Science Applications,Spectroscopy,Molecular Biology,General Medicine,Catalysis
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献