Increased L-Selectin on Monocytes Is Linked to the Autoantibody Profile in Systemic Sclerosis

Author:

Brezovec NežaORCID,Perdan-Pirkmajer Katja,Kuret TadejaORCID,Burja Blaž,Sodin-Šemrl Snežna,Čučnik Saša,Lakota Katja

Abstract

Monocytes are known to be implicated in the pathogenesis of systemic sclerosis (SSc), as they exert prominent migratory, adhesive, and chemotactic properties. The aim of our study was to characterize the surface expression of adhesion/chemotactic molecules (CD62L, CD11b, CCR2, CCR5) on the SSc monocytes and determine correlations with the clinical presentation of SSc. We included 38 SSc patients and 36 healthy age-and sex-matched controls. Isolated monocytes, as well as in vitro serum-treated monocytes, were analyzed by flow cytometry; additionally, soluble CD62L was measured in serum. We found increased soluble CD62L in the SSc serum samples and increased CD62L on the surface of the SSc monocytes in the in the same set of patients. Among samples with determined SSc-specific autoantibodies, the surface CD62L was the lowest in patients positive for anti-PM/Scl autoantibodies and the highest in patients with anti-topoisomerase I autoantibodies (ATA). The treatment of isolated healthy monocytes with ATA-positive SSc serum resulted in increased surface CD62L expression. Moreover, surface CCR5 was reduced on the monocytes from SSc patients with interstitial lung disease but also, along with CCR2, negatively correlated with the use of analgesics/anti-inflammatory drugs and immunosuppressants. In conclusion, increased CD62L on SSc monocytes, particularly in ATA-positive patients, provides new insights into the pathogenesis of SSc and suggests CD62L as a potential therapeutic target.

Funder

Slovenian Research Agency

Publisher

MDPI AG

Subject

Inorganic Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Computer Science Applications,Spectroscopy,Molecular Biology,General Medicine,Catalysis

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3