The Association of Rpb4 with RNA Polymerase II Depends on CTD Ser5P Phosphatase Rtr1 and Influences mRNA Decay in Saccharomyces cerevisiae

Author:

Garrido-Godino Ana I.ORCID,Cuevas-Bermúdez Abel,Gutiérrez-Santiago FranciscoORCID,Mota-Trujillo Maria del Carmen,Navarro FranciscoORCID

Abstract

Rtr1 is an RNA polymerase II (RNA pol II) CTD-phosphatase that influences gene expression during the transition from transcription initiation to elongation and during transcription termination. Rtr1 interacts with the RNA pol II and this interaction depends on the phosphorylation state of the CTD of Rpb1, which may influence dissociation of the heterodimer Rpb4/7 during transcription. In addition, Rtr1 was proposed as an RNA pol II import factor in RNA pol II biogenesis and participates in mRNA decay by autoregulating the turnover of its own mRNA. Our work shows that Rtr1 acts in RNA pol II assembly by mediating the Rpb4/7 association with the rest of the enzyme. RTR1 deletion alters RNA pol II assembly and increases the amount of RNA pol II associated with the chromatin that lacks Rpb4, decreasing Rpb4-mRNA imprinting and, consequently, increasing mRNA stability. Thus, Rtr1 interplays RNA pol II biogenesis and mRNA decay regulation. Our data also indicate that Rtr1 mediates mRNA decay regulation more broadly than previously proposed by cooperating with Rpb4. Interestingly, our data include new layers in the mechanisms of gene regulation and in the crosstalk between mRNA synthesis and decay by demonstrating how the association of Rpb4/7 to the RNA pol II influences mRNA decay.

Funder

Regional Government of Andalusia

Publisher

MDPI AG

Subject

Inorganic Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Computer Science Applications,Spectroscopy,Molecular Biology,General Medicine,Catalysis

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3