Rapid Analysis of Composition of Coal Gangue Based on Deep Learning and Thermal Infrared Spectroscopy

Author:

Song Liang,Yu Ying,Yan Zelin,Xiao DongORCID,Sun Yongqi,Zhang Xuanxuan,Li Xingkai,Cheng Binbin,Gao Han,Bai Dong

Abstract

Coal gangue is the main solid waste in coal mining areas, and its annual emissions account for about 10% of coal production. The composition information of coal gangue is the basis of reasonable utilization of coal gangue, and according to the composition information of coal gangue, one can choose the appropriate application scene. The reasonable utilization of coal gangue can not only effectively alleviate the environmental problems in mining areas but also produce significant economic and social benefits. Chemical analysis techniques are the principal ones used in traditional coal gangue analysis; however, they are slow and expensive. Many researchers have used machine learning techniques to analyze the spectral data of coal gangue, primarily random forests (RFs), extreme learning machines (ELMs), and two-hidden-layer extreme learning machines (TELMs). However, these techniques are heavily reliant on the preprocessing of the spectral data. This research suggests a quick analysis approach for coal gangue based on thermal infrared spectroscopy and deep learning in light of the drawbacks of the aforementioned methodologies. The proposed deep learning model is named SR-TELM, which extracts spectral features using a convolutional neural network (CNN) consisting of a spatial attention mechanism and residual connections and implements content prediction with TELM as a regressor, which can effectively overcome the dependence on preprocessing. The usefulness and speed of SR-TELM in coal gangue analysis were demonstrated by comparing several models in order to verify the proposed coal gangue analysis model. The experimental findings show that, for the prediction tasks of moisture, ash, volatile matter, and fixed carbon content, respectively, the SR-TELM model attained an R2 of 0.947, 0.972, 0.967, and 0.981 and an RMSE of 0.274, 4.040, 1.567, and 2.557 with a test time of just 0.03 s. It offers a method for the analysis of coal gangue that is low cost, highly effective, and highly reliable.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

Management, Monitoring, Policy and Law,Renewable Energy, Sustainability and the Environment,Geography, Planning and Development,Building and Construction

Reference37 articles.

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3