Technical, Environmental, and Process Safety Assessment of Acetone-Butanol-Ethanol Fermentation of Cassava Residues

Author:

Meramo SamirORCID,Gonzalez-Quiroga ArturoORCID,Gonzalez-Delgado AngelORCID

Abstract

The North-Colombian region has enormous potential for producing bioproducts and bioenergy from agricultural residues. Yet, scaling bioproducts and bioenergy to industrial practice requires further investigation, especially for environmental impact minimization and improved process safety. This work assesses two alternatives for valorizing cassava residues via acetone, butanol, and ethanol (ABE) fermentation. Two ABE fermentation routes are assessed. In Route 1, pretreatment and purification involve dilute-acid pretreatment and multi-effect distillation and decantation operations, while Route 2 includes steam explosion and reactive distillation. Hazard Identification and Risk Assessment (HIRA) and Waste Reduction Algorithm (WAR) were applied to assess ABE fermentation. Simulation results indicate butanol yields of 0.10–0.12 kg/kg feedstock and net energy ratio (NER) <1. Route 2 shows the highest total output of Potential Environmental Impacts (PEI) with 5.56 PEI/kg butanol. Both ABE fermentation routes obtained Fire and Explosion Damage Index (FEDI) values above 300 for acetone and ethanol recovery/purification stages. Both routes are classified as “hazardous” considering the flammability of handled substances, and their relative safety performance is remarkably similar. These results pave the way toward deploying both routes for adding value to the cassava residues in North Colombia by applying safe, efficient, and environmentally friendly transformation technologies.

Publisher

MDPI AG

Subject

Management, Monitoring, Policy and Law,Renewable Energy, Sustainability and the Environment,Geography, Planning and Development,Building and Construction

Reference90 articles.

1. Reducing food’s environmental impacts through producers and consumers;Poore;Science,2018

2. FAO, US (2022, August 13). The State of the World’s Land and Water Resources: Managing Systems at Risk. Available online: http://www.fao.org/3/i1688e/i1688e.pdf.

3. Valorization of agro-industrial wastes for biorefinery process and circular bioeconomy: A critical review;Yaashikaa;Bioresour. Technol.,2022

4. NL Agency (2013). Biomass Opportunities in Colombia, Ministry of Foreign Affairs.

5. Monitoring system for agronomic variables based in WSN technology on cassava crops;Morales;Comput. Electron. Agric.,2018

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3