Dynamic Characteristics of Reinforced Soil Retaining Wall with Composite Gabion Based on Time Domain Identification Method

Author:

Cai XiaoguangORCID,Zhang ShaoqiuORCID,Li SihanORCID,Xu Honglu,Huang XinORCID,Zhu ChenORCID,Liu Xin

Abstract

A series of shaking table tests was carried out on the dynamic performance and working mechanism of a gabion reinforced soil retaining wall under seismic load. The test results show that the panel presents the deformation mode of middle and upper bulging at the contact point between the rigid box and the retaining wall The settlement of top backfill is relatively uniform, and there is basically no differential settlement, the natural frequencies at different positions and heights inside the retaining wall are basically the same, and the natural frequencies are stable between 22.61 and 23.04 Hz below 0.8 g. The damping ratio decreases with the increase in wall height, and the damping ratio at each stage after vibration is greater than that before vibration. The seismic earth pressure is nonlinearly distributed. The measured value of the lower part of the retaining wall is smaller than that calculated by the Seed–Whitman method with an increase in peak acceleration, and the measured value of the upper part of the retaining wall is larger than the theoretical calculation results. The position of the resultant action point of seismic earth pressure is greater than 0.33 times the wall height specified by the Mononobe–Okabe method.

Funder

Earthquake Technology Spark Program of China

Fundamental Research Funds for the Central Universities

Publisher

MDPI AG

Subject

Management, Monitoring, Policy and Law,Renewable Energy, Sustainability and the Environment,Geography, Planning and Development,Building and Construction

Reference24 articles.

1. MACCAFERRI (2021). The project cost saved CNY 12,382 per meter with this scheme [EB/OL]. Maccaferri (WeChat Public Number), 8, 31. (In Chinese).

2. Innovative reinforced soil structures for high walls and slopes combining polymeric and metallic reinforcements. The 5th International Conference of Euro Asia Civil Engineering Forum;Matteo;Procedia Eng.,2015

3. Calculation of fundamental frequencies of reinforced retaining walls with full-height rigid facing;Xu;Rock Soil Mech.,2018

4. An analytical method for calculating the natural frequency of retaining walls;Ghanbari;Int. J. Civ. Eng.,2013

5. Analytical method for calculating natural frequencies of geosynthetic-reinforced wall with full-height concrete facing;Ramezani;Geosynth. Int.,2016

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3