Abstract
Novel silver encapsulated nanocomposite zinc oxide/iron tetra-poly-vanadate (Ag-ZnO/Fe2V4O13) was synthesized with various wt% of silver (1.0–2.5 wt% of Ag) by cost-effective photo-deposition method under the irradiation of ultraviolet-A (UV-A) light. The nanostructure of the Ag-ZnO/Fe2V4O13 was explored by various characterization techniques. The surface functionalities were confirmed by Fourier transform infrared spectra and the crystalline nature of the material was revealed by X-ray diffraction patterns. Furthermore, the surface morphology and the optical properties of the composites were analyzed by scanning electron microscopy, energy dispersive X-ray–elemental color mapping (ECM), high-resolution transmission electron microscopy (HRTEM), ultraviolet–visible diffuse reflectance spectroscopy and photoluminescence. The crystallite size of Ag-ZnO/Fe2V4O13 was 28.5 nm which was consistent with HRTEM analysis. The photocatalytic activity was tested against aqueous methyl orange degradation under UV-A light irradiation. In all five runs, the stability of the catalyst was confirmed by reusability measurements and almost 98% of degradation was achieved. A suitable degradation pathway was proposed based on intermediates obtained during the degradation analyzed by gas chromatography–mass spectrometry. Trapping experiments confirmed that the superoxide radical anion (O2•−) was considered as the most active species for this degradation process. Complete mineralization was confirmed by the measurements of chemical oxygen demand.
Subject
Management, Monitoring, Policy and Law,Renewable Energy, Sustainability and the Environment,Geography, Planning and Development,Building and Construction
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献