Spatial Analysis of the Water Harvesting Potential of Permeable Pavements in Australia

Author:

Iqbal AsifORCID,Rahman Md MizanurORCID,Beecham SimonORCID

Abstract

An increase in impermeable surface areas with urban development contributes to the rapid and large amount of surface runoff during rainfall. This often requires higher capacity stormwater collection systems, which can cause stress on the existing drainage system and this subsequently contributes to urban flooding. However, urban runoff can be reduced and managed for flood control and converted into a useful resource by harvesting and reusing the water. This can be achieved by switching from impermeable to permeable pavements. However, the amount of stormwater that can be harvested in a permeable pavement system depends on many factors, including rainfall, the water reuse demand and the materials used. This research aims to assess the requirements for permeable pavement design across Australia to balance demand, runoff reduction and construction requirements. A design approach employing the hydrological effects of the infiltration system was adopted for the analysis, along with a spatial analysis for a probabilistic prediction. A relationship was also established to predict a probable design thickness of pavement for various parameters. The research showed that in most Australian cities, for a 120 mm permeable pavement thickness, 40–80% of rainfall-runoff could be harvested, meeting about 10–15% of domestic water demand. The approach developed in this study can be useful for screening the potential of permeable pavements for water harvesting and for predicting spatially where a circular economic approach can be more efficient.

Publisher

MDPI AG

Subject

Management, Monitoring, Policy and Law,Renewable Energy, Sustainability and the Environment,Geography, Planning and Development,Building and Construction

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3