Does Smart City Construction Decrease Urban Carbon Emission Intensity? Evidence from a Difference-in-Difference Estimation in China

Author:

Zhang Eryu,He Xiaoyu,Xiao Peng

Abstract

Climatic changes and environmental pollution caused by traditional urban development models have increased due to accelerated urbanisation and industrialisation. As a new model of urban development, smart city construction relies on digital technology reform to achieve intelligent urban governance, which is crucial for reducing carbon emission intensity and achieving regional green development. This paper constructs a multi-period DID model based on panel data from 283 cities from 2007 to 2019 to explore the impact of smart city construction on urban carbon emission intensity. This study found that smart city construction decreased urban carbon emissions intensity significantly and decreased carbon emissions per unit GDP in pilot areas by 0.1987 tonnes/10,000 CNY compared to that in non-pilot areas. According to a heterogeneity analysis, the integration of smart city developments could decrease carbon emission intensity in northern China’s cities and resource-based cities significantly but had an insignificant influence on carbon emission intensity in southern China’s cities and non-resource-based cities. The reason for this finding is that northern cities and resource-based cities have a higher carbon emission intensity and enjoy more marginal benefits from smart city construction. Based on an analysis of the influencing mechanisms, smart city construction can decrease urban carbon emission intensity by stimulating green innovation vitality, upgrading industrial structures, and decreasing energy consumption. These research conclusions can provide directions for urban transformation and low-carbon development, as well as a case study and experience for countries that have not yet established smart city construction.

Publisher

MDPI AG

Subject

Management, Monitoring, Policy and Law,Renewable Energy, Sustainability and the Environment,Geography, Planning and Development,Building and Construction

Cited by 10 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3