An Empirical Study on Transmission Beamforming for Ultrasonic Guided-Wave Based Structural Health Monitoring

Author:

Cantero-Chinchilla SergioORCID,Aranguren GerardoORCID,Malik Muhammad Khalid,Etxaniz JosuORCID,Martín de la Escalera Federico

Abstract

The development of reliable structural health monitoring techniques is enabling a healthy transition from preventive to condition-based maintenance, hence leading to safer and more efficient operation of different industries. Ultrasonic guided-wave based beamforming is one of the most promising techniques, which supports the monitoring of large thin-walled structures. However, beamforming has been typically applied to the post-processing stage (also known as virtual or receiver beamforming) because transmission or physical beamforming requires complex hardware configurations. This paper introduces an electronic structural health monitoring system that carries out transmission beamforming experiments by simultaneously emitting and receiving ultrasonic guided-waves using several transducers. An empirical characterization of the transmission beamforming technique for monitoring an aluminum plate is provided in this work. The high signal-to-noise ratio and accurate angular precision of the physical signal obtained in the experiments suggest that transmission beamforming can increase the reliability and robustnessof this monitoring technique for large structures and in real-world noisy environments.

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3