Ambiguity-Free Optical–Inertial Tracking for Augmented Reality Headsets

Author:

Cutolo FabrizioORCID,Mamone VirginiaORCID,Carbonaro NicolaORCID,Ferrari VincenzoORCID,Tognetti AlessandroORCID

Abstract

The increasing capability of computing power and mobile graphics has made possible the release of self-contained augmented reality (AR) headsets featuring efficient head-anchored tracking solutions. Ego motion estimation based on well-established infrared tracking of markers ensures sufficient accuracy and robustness. Unfortunately, wearable visible-light stereo cameras with short baseline and operating under uncontrolled lighting conditions suffer from tracking failures and ambiguities in pose estimation. To improve the accuracy of optical self-tracking and its resiliency to marker occlusions, degraded camera calibrations, and inconsistent lighting, in this work we propose a sensor fusion approach based on Kalman filtering that integrates optical tracking data with inertial tracking data when computing motion correlation. In order to measure improvements in AR overlay accuracy, experiments are performed with a custom-made AR headset designed for supporting complex manual tasks performed under direct vision. Experimental results show that the proposed solution improves the head-mounted display (HMD) tracking accuracy by one third and improves the robustness by also capturing the orientation of the target scene when some of the markers are occluded and when the optical tracking yields unstable and/or ambiguous results due to the limitations of using head-anchored stereo tracking cameras under uncontrollable lighting conditions.

Funder

Horizon 2020

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

Cited by 12 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. A review on tracking head movement in augmented reality systems;Procedia Computer Science;2023

2. Comparison of Passive and Active Fiducials for Optical Tracking;Latvian Journal of Physics and Technical Sciences;2022-10-01

3. Head-Mounted Augmented Reality Platform for Markerless Orthopaedic Navigation;IEEE Journal of Biomedical and Health Informatics;2022-02

4. Marker‐less augmented reality based on monocular vision for falx meningioma localization;The International Journal of Medical Robotics and Computer Assisted Surgery;2021-10-22

5. Device-Agnostic Augmented Reality Rendering Pipeline for AR in Medicine;2021 IEEE International Symposium on Mixed and Augmented Reality Adjunct (ISMAR-Adjunct);2021-10

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3