Adaptive Indoor Area Localization for Perpetual Crowdsourced Data Collection

Author:

Laska MariusORCID,Blankenbach JörgORCID,Klamma RalfORCID

Abstract

The accuracy of fingerprinting-based indoor localization correlates with the quality and up-to-dateness of collected training data. Perpetual crowdsourced data collection reduces manual labeling effort and provides a fresh data base. However, the decentralized collection comes with the cost of heterogeneous data that causes performance degradation. In settings with imperfect data, area localization can provide higher positioning guarantees than exact position estimation. Existing area localization solutions employ a static segmentation into areas that is independent of the available training data. This approach is not applicable for crowdsoucred data collection, which features an unbalanced spatial training data distribution that evolves over time. A segmentation is required that utilizes the existing training data distribution and adapts once new data is accumulated. We propose an algorithm for data-aware floor plan segmentation and a selection metric that balances expressiveness (information gain) and performance (correctly classified examples) of area classifiers. We utilize supervised machine learning, in particular, deep learning, to train the area classifiers. We demonstrate how to regularly provide an area localization model that adapts its prediction space to the accumulating training data. The resulting models are shown to provide higher reliability compared to models that pinpoint the exact position.

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

Cited by 13 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Autonomous and reliable fingerprint map maintenance for indoor positioning system;Computer Networks;2024-09

2. Learning-Based WiFi Fingerprint Inpainting via Generative Adversarial Networks;2024 33rd International Conference on Computer Communications and Networks (ICCCN);2024-07-29

3. Methods and Applications of Space Understanding in Indoor Environment—A Decade Survey;Applied Sciences;2024-05-07

4. Learning Indoor Area Localization: The Trade-Off Between Expressiveness and Reliability;Machine Learning for Indoor Localization and Navigation;2023

5. GIS & BIM bei der Polizei – Chancen und Potenziale;Handbuch Cyberkriminologie 1;2023

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3