A Novel 3D Node Deployment Inspired by Dusty Plasma Crystallization in UAV-Assisted Wireless Sensor Network Applications

Author:

Tang RongxinORCID,Tao Yuhao,Li Jiahao,Hu Zhiming,Yuan Kai,Wu Zhiping,Liu Shiyun,Wang Yuhao

Abstract

With the rapid progress of hardware and software, a wireless sensor network has been widely used in many applications in various fields. However, most discussions for the WSN node deployment mainly concentrated on the two-dimensional plane. In such a case, some large scale applications, such as information detection in deep space or deep sea, will require a good three dimensional (3D) sensor deployment scenario and also attract most scientists’ interests. Excellent deployment algorithms enable sensors to be quickly deployed in designated areas with the help of unmanned aerial vehicles (UAVs). In this paper, for the first time, we present a three dimensional network deployment algorithm inspired by physical dusty plasma crystallization theory in large-scale WSN applications. Four kinds of performance evaluation methods in 3D space, such as the moving distance, the spatial distribution diversion, system coverage rate, and the system utilization are introduced and have been carefully tested.Furthermore, in order to improve the performance of the final deployment, we integrated the system coverage rate and the system utilization to analyze the parameter effects of the Debye length and the node sensing radius. This criterion attempts to find the optimal sensing radius with a fixed Debye length to maximize the sensing range of the sensor network while reducing the system redundancy. The results suggest that our 3D algorithm can quickly complete an overall 3D network deployment and then dynamically adjust parameters to achieve a better distribution. In practical applications, engineers may choose appropriate parameters based on the sensor’s hardware capabilities to achieve a better 3D sensor network deployment. It may be significantly used in some large-scale 3D WSN applications in the near future.

Funder

National Natural Science Foundation of China

Interdisciplinary Innovation Fund of Natural Science from Nanchang University

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3