Affiliation:
1. Engineering Department, Swarthmore College, Swarthmore, PA 19081, USA
2. School of Aerospace and Mechanical Engineering, University of Oklahoma, Norman, OK 73019, USA
Abstract
This study investigates the influence of microstructure patterns on the hydrophobic properties of surfaces of 3D-printed objects generated using photopolymer resin. Various arrangements and designs of microstructures on the surface of 3D-printed objects were examined. Leveraging the superior resolution of stereolithography printers (SLA) over fused deposition modeling, intricate microfeature designs were well-implemented. The experiments involved a range of structures on the surface of the 3D-printed objects, including precisely defined arrays of microcylinders, microchannels, and other complex designs generated by parametric equations. The hydrophobicity of the 3D-printed objects was assessed through the water droplet test, revealing a spectrum of results ranging from hydrophobic to weakly hydrophobic, and to hydrophilic surfaces. Light microscopy was employed to characterize the surface morphological properties of the 3D-printed objects, which were then correlated with the measured contact angles. It was discovered that the 3D-printed objects with microstructures formed using parametric functions exhibited patterns with irregularities and fluctuations along all directions or axes, resulting in a higher degree of hydrophobicity compared to structured matrices with pillared arrays. However, some surfaces created with parametric functions resulted in an anisotropic system where the material properties varied along one direction, while the other direction exhibited a flat, planar surface. These anisotropic systems were found to be less hydrophobic according to the water droplet test.
Funder
National Science Foundation REU-Site