Synthesis and Functionalities of Blade-Coated Nanographite Films

Author:

Pellegrini Paloma E. S.1ORCID,Vaz Luana de Moraes Leitão Gonçalves2ORCID,Nista Silvia Vaz Guerra1ORCID,Hernández-Figueroa Hugo Enrique2ORCID,Moshkalev Stanislav1ORCID

Affiliation:

1. Center for Semiconductor Components and Nanotechnology, Universidade Estadual de Campinas, Campinas 13083-870, Brazil

2. School of Electrical and Computer Engineering, Universidade Estadual de Campinas, Campinas 13083-852, Brazil

Abstract

The manufacturing and characterization of nanographite films on substrates form the foundation for advances in materials science. Conductive graphite films are challenging products, as isolating graphite oxide is often necessary. In this study, nanographite suspensions containing non-oxidized graphite flakes were used to fabricate novel thin and ultrathin films via blade coating on industry-standard substrates. Films as thin as 346 nm were successfully fabricated. Moreover, it was possible to induce the orientation of the graphite nanoflakes via blade coating. This orientation led to electrical anisotropy; thus, the electrical behavior of the films in each orthogonal direction differed. After adjusting the coating parameters and the concentration of the nanographite flakes, the electrical conductivity ranged from 0.04 S/cm to 0.33 S/cm. In addition, with such adjustments, the transparency of the films in the visible range varied from 20% to 75%. By establishing a methodology for the tuning of both electrical and optical properties via adjustments in the nanographite suspension and coating parameters, we can fabricate resistant, conductive, and transparent films satisfying certain requirements. The results presented here can be extrapolated to enhance applications, especially for photonics and solar cells, in fields that require electrical conductive materials with high levels of transparency.

Funder

National Council for Scientific and Technological Development, CNPq-NAMITEC

Coordination of Superior Level Staff Improvement, CAPES

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3