Performance of QR Code Detectors near Nyquist Limits

Author:

Skurowski PrzemysławORCID,Nurzyńska KarolinaORCID,Pawlyta MagdalenaORCID,Cyran Krzysztof A.ORCID

Abstract

For the interacting with real world, augmented reality devices need lightweight yet reliable methods for recognition and identification of physical objects. In that regard, promising possibilities are offered by supporting computer vision with 2D barcode tags. These tags, as high contrast and visually well-defined objects, can be used for finding fiducial points in the space or to identify physical items. Currently, QR code readers have certain demands towards the size and visibility of the codes. However, the increase of resolution of built-in cameras makes it possible to identify smaller QR codes in the scene. On the other hand, growing resolutions cause the increase to the computational effort of tag location. Therefore, resolution reduction in decoders is a common trade-off between processing time and recognition capabilities. In this article, we propose the simulation method of QR codes scanning near limits that stem from Shannon’s theorem. We analyze the efficiency of three publicly available decoders versus different size-to-sampling ratios (scales) and MTF characteristics of the image capture subsystem. The MTF we used is based on the characteristics of real devices, and it was modeled using Gaussian low-pass filtering. We tested two tasks—decoding and locating-and-decoding. The findings of the work are several-fold. Among others, we identified that, for practical decoding, the QR-code module should be no smaller than 3–3.5 pixels, regardless of MTF characteristics. We confirmed the superiority of Zbar in practical tasks and the worst recognition capabilities of OpenCV. On the other hand, we identified that, for borderline cases, or even below Nyquist limit where the other decoders fail, OpenCV is still capable of decoding some information.

Funder

European Union

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3