Gut Microbiota Composition and Diversity in Different Commercial Swine Breeds in Early and Finishing Growth Stages

Author:

Ma JianfengORCID,Chen Jingyun,Gan MailinORCID,Chen Lei,Zhao Ye,Zhu Yan,Niu Lili,Zhang Shunhua,Zhu Li,Shen Linyuan

Abstract

The gut microbiota affects the metabolism, health and growth rate of pigs. Understanding the characteristics of gut microbiota of different pig breeds at each growth stage will enable the design of individualized feeding strategies. The present study aimed to compare the growth curves and development patterns of pigs of three different breeds (Duroc, Landrace and Yorkshire) using the mathematical models Gompertz, Logistic, Von Bertalanffy and Richards. For Duroc pigs, the Gompertz model showed the highest prediction accuracy (R2 = 0.9974). In contrast, the best models for Landrace and Yorkshire pigs were Richards (R2 = 0.9986) and Von Bertalanffy (R2 = 0.9977), respectively. Path analysis showed that body length (path coefficient  =  0.507) and chest circumference (path coefficient  =  0.532) contributed more significantly to the body weight of pigs at the early growth stage, while hip circumference (path coefficient  =  0.312) had a greater influence on pig body weight in the late growth stage. Moreover, the composition of the gut microbiota of pigs at two growth stages (60 kg of body weight in the early growth stage and 120 kg in the finishing stage) was studied using 16S rRNA sequencing technology. Variations in gut microbiota composition of pigs at different growth stages were observed. KEGG pathway enrichment analysis of annotated metagenomes revealed that protein synthesis and amino acid metabolism pathways were significantly enriched in pigs at the early growth stage, which may be related to nutritional requirements of pigs during this stage. This study confirmed longitudinal variation in the gut microbiota of pigs pertaining to age as well as lateral variation related to pig breed. The present findings expand the current understanding of the variations in swine gut microbiota during production stages.

Funder

National Key Research and Development Program of China

Sichuan Science and Technology Program

Publisher

MDPI AG

Subject

General Veterinary,Animal Science and Zoology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3