High Dietary Organic Iron Supplementation Decreases Growth Performance and Induces Oxidative Stress in Broilers

Author:

Han MiaomiaoORCID,Fu Xinsen,Xin Xiangqi,Dong Yuanyang,Miao Zhiqiang,Li Jianhui

Abstract

Although Iron (Fe) is an essential nutrient that plays a vital role in respiratory processes, excessive Fe in the diet can affect the health of broilers. We investigated the effects of diet supplemented with high levels of iron chelates with lysine and glutamic acid (Fe–LG) on the growth performance, serum biochemical parameters, antioxidant status, and duodenal mRNA expression of Fe transporters in broilers. A total of 800 1-day-old male Arbor Acres broilers were assigned to 5 groups, with 8 replicates each. Broilers were fed a corn–soybean meal basal diet or basal diets supplemented with 40, 80, 400, or 800 mg Fe/kg as Fe–LG for 6 weeks. The body weight (BW) was increased in the 80 mg Fe/kg treatment group, but decreased in the 800 mg Fe/kg treatment group on day 21. During days 1–21, compared with the control group, the supplementation of the 80 mg Fe/kg increased the average daily gain (ADG) and average daily feed intake (ADFI); however, the supplementation of the 800 mg Fe/kg group decreased the ADG and increased the FCR in broilers (p < 0.05). The heart, liver, spleen, and kidney indices were reduced in the 800 mg Fe/kg treatment group (p < 0.05). The supplementation of the 800 mg Fe/kg group increased the serum aspartate aminotransferase activity and the levels of creatinine and urea nitrogen on day 42 (p < 0.05). The broilers had considerably low liver total superoxide dismutase activity and total antioxidant capacity in the 800 mg Fe/kg treatment group (p < 0.05). Serum and liver Fe concentrations were elevated in the 400 and 800 mg Fe/kg treatment groups, but were not affected in the 40 and 80 mg Fe/kg treatment groups. The duodenal Fe transporters divalent metal transporter 1 (DMT1) and ferroportin 1 (FPN1) were downregulated in the Fe–LG treatment groups (p < 0.05). We conclude that a high dietary supplement of 800 mg Fe/kg in broilers leads to detrimental health effects, causing kidney function injury and liver oxidative stress.

Funder

Shanxi Province Basic Research Project

Publisher

MDPI AG

Subject

General Veterinary,Animal Science and Zoology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3