Vine-Copula-Based Quantile Regression for Cascade Reservoirs Management

Author:

El Hannoun WafaaORCID,El Adlouni Salah-Eddine,Zoglat Abdelhak

Abstract

This paper features an application of Regular Vine (R-vine) copulas, a recently developed statistical tool to assess composite risk. Copula-based dependence modelling is a popular tool in conditional risk assessment, but is usually applied to pairs of variables. By contrast, Vine copulas provide greater flexibility and permit the modelling of complex dependency patterns using a wide variety of bivariate copulas which may be arranged and analysed in a tree structure to explore multiple dependencies. This study emphasises the use of R-vine copulas in an analysis of the co-dependencies of five reservoirs in the cascade of the Saint-John River basin in Eastern Canada. The developed R-vine copulas lead to the joint and conditional return periods of maximum volumes, for hydrologic design and cascade reservoir management in the basin. The main attraction of this approach to risk modelling is the flexibility in the choice of distributions used to model heavy-tailed marginals and co-dependencies.

Funder

Natural Sciences and Engineering Research Council of Canada

Publisher

MDPI AG

Subject

Water Science and Technology,Aquatic Science,Geography, Planning and Development,Biochemistry

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3