Environmental Remediation of Desalination Plant Outfall Brine Discharge from Heavy Metals and Salinity Using Halloysite Nanoclay

Author:

Aljohani Naif S.,Al-Farawati Radwan K.ORCID,Shabbaj Ibrahim I.,Al-Mur Bandar A.,Kavil Yasar N.,Abdel Salam MohamedORCID

Abstract

Halloysite (HS) nanoclay was used for the environmental treatment of desalination brine water discharge via the adsorptive removal of selected heavy metals ions; zinc, iron, nickel, and copper, as well as salinity. Different techniques were used for the characterization of the HS nanoclay and it was found that HS nanoclay exists as transparent hollow nanotubes with high surface area. The study showed that most of the heavy metal ions could be removed successfully using the HS nanoclay in a few minutes, at normal conditions. The adsorptive removal of zinc, iron, nickel, and copper, as well as salinity on HS nanoclay was explored kinetically. It was concluded that the pseudo-second-order kinetic model was able to describe the remediation process. In addition, it was found that most of the heavy metals and salinity were removed from the desalination plant outfall brine discharge and the final concentrations were lower than those in the control and standard samples.

Funder

King Abdulaziz University

Publisher

MDPI AG

Subject

Water Science and Technology,Aquatic Science,Geography, Planning and Development,Biochemistry

Reference51 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3