Author:
Shi Yuandi,Hu Yinan,Wang Bin
Abstract
Many image encryption schemes based on compressed sensing have the problem of poor quality of decrypted images. To deal with this problem, this paper develops an image encryption scheme by multiscale block compressed sensing. The image is decomposed by a three-level wavelet transform, and the sampling rates of coefficient matrices at all levels are calculated according to multiscale block compressed sensing theory and the given compression ratio. The first round of permutation is performed on the internal elements of the coefficient matrices at all levels. Then the coefficient matrix is compressed and combined. The second round of permutation is performed on the combined matrix based on the state transition matrix. Independent diffusion and forward-backward diffusion between pixels are used to obtain the final cipher image. Different sampling rates are set by considering the difference of information between an image’s low- and high-frequency parts. Therefore, the reconstruction quality of the decrypted image is better than that of other schemes, which set one sampling rate on an entire image. The proposed scheme takes full advantage of the randomness of the Markov model and shows an excellent encryption effect to resist various attacks.
Funder
the National Key Technology R&D Program of China
National Natural Science Foundation of China
LiaoNing Revitalization Talents Program
Natural Science Foundation of Liaoning Province
Subject
General Physics and Astronomy
Cited by
12 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献