Study on the Thermal Field of a Hydro-Generator under the Effect of a Plateau Climate

Author:

Shan Rong1,Duan Juan1,Zeng Yun1ORCID,Qian Jing1,Dong Guanghe1,Zhu Min1,Zhao Jigang2

Affiliation:

1. Faculty of Metallurgical and Energy Engineering, Kunming University of Science and Technology, Kunming 650093, China

2. Kunming Electric Machinery Factory Limited Liability Company, Kunming 650100, China

Abstract

With the advancement in the developmental project on the lower reaches of the Yarlung Tsangpo River, the influence of the plateau climate environment on the performance of a hydro-generator has received more and more attention from researchers. This study numerically simulated the thermal field of a hydro-generator with a 20 MW capacity under the effect of a plateau climate. Ambient pressure and temperature are two main factors that affect the temperature distribution of the generator. In addition, temperature distributions with different speeds are also studied under a plateau climate. The results show that the generator temperature decreases with increasing air pressure and speed. The generator temperature increases linearly with increasing ambient temperature. Among them, when the pressure lies in the range of 25–85 kPa, the temperature change gradient of the stator structure is very large. The temperature difference gradually decreases with the increase in air pressure. The temperature gradient gradually slows down when the air pressure is above 85 kPa. When the pressure is located at 55–85 kPa, the average temperature difference of the stator windings is 6.325 °C, and the average temperature difference of the stator core is 3.815 °C. Finally, the temperature distribution pattern can provide a basis for staff in different barometric pressure regions. It can also improve the safety and reliability of the hydro-generator under the effect of a plateau climate, which is important for improving its integrated hydraulic performance.

Funder

the ranking at the top of the list for science and technology projects of Yunnan Province

Yunnan Fundamental Research Projects

National Natural Science Foundation of China (NSFC) Project

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3