Multihousehold Load Forecasting Based on a Convolutional Neural Network Using Moment Information and Data Augmentation

Author:

Acharya Shree Krishna1ORCID,Yu Hwanuk2ORCID,Wi Young-Min3ORCID,Lee Jaehee4

Affiliation:

1. School of Business, University College Dublin, Dublin A94XF34, Ireland

2. School of Electrical Engineering, Korea University, Seoul 02841, Republic of Korea

3. Department of Electrical Engineering, Sangmyung University, Seoul 03016, Republic of Korea

4. Department of Electrical and Control Engineering, Mokpo National University, Muan 58554, Republic of Korea

Abstract

Deep learning (DL) networks are a popular choice for short-term load forecasting (STLF) in the residential sector. Hybrid DL methodologies based on convolutional neural networks (CNNs) and long short-term memory networks (LSTMs) have a higher forecasting accuracy than conventional statistical STLF techniques for different types of single-household load series. However, existing load forecasting methodologies are often inefficient when a high load demand persists for a few hours in a day. Peak load consumption is explicitly depicted as a tail in the probability distribution function (PDF) of the load series. Due to the diverse and uncertain nature of peak load demands, DL methodologies have difficulty maintaining consistent forecasting results, particularly when the PDF of the load series has a longer tail. This paper proposes a multihousehold load forecasting strategy based on the collective moment measure (CMM) (which is obtained from the PDF of the load series), data augmentation, and a CNN. Each load series was compared and ordered through CMM indexing, which helped maintain a minimum or constant shifting variance in the dataset inputted to the CNN. Data augmentation was used to enlarge the input dataset and solve the existing data requirement issues of the CNN. With the ordered load series and data augmentation strategy, the simulation results demonstrated a significant improvement in the performance of both single-household and multihousehold load forecasting. The proposed method predicts day-ahead multihousehold loads simultaneously and compares the results based on a single household. The forecasting performance of the proposed method for six different household groups with 10, 20, 30, 50, 80, and 100 household load series was evaluated and compared with those of existing methodologies. The mean absolute percentage error of the prediction results for each multihousehold load series could be improved by more than 3%. This study can help advance the application of DL methods for household load prediction under high-load-demand conditions.

Funder

National Research Foundation of Korea

Publisher

MDPI AG

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3