A Novel Method for Line Selection for Cross-Line Two-Point Successive Grounding Faults Utilizing Transient and Steady-State Information

Author:

Wang Yizhao12,Liu Jian12,Zhang Zhihua2,Ren Shuangxue3

Affiliation:

1. School of Electrical Engineering, Xi’an University of Technology, Xi’an 710054, China

2. State Grid Shaanxi Electric Power Research Institute, Xi’an 710054, China

3. State Grid Shaanxi Economic Research Institute, Xi’an 710061, China

Abstract

In order to improve the performance of an arc suppression coil grounding system in handling cross-line two-point successive grounding faults (CTSGs), the applicability of the transient quantity method and the steady-state quantity method for assessing CTSGs is analyzed. Then, a novel method for line selection for CTSGs was proposed, which comprehensively utilizes transient and steady-state information. Specifically, this method adopts a continuous line selection process, with priority given to the transient quantity method, and a supplementary line selection process, with priority given to the steady-state quantity method. After accurately selecting some faulty lines, such lines are tripped, and then, the process proceeds with continuous line selection again. When the number of cycles exceeds the set value, and the fault line cannot be completely cut off, they are tripped one by one according to the degree to which they are approaching the steady-state method criterion, from large to small. Furthermore, in response to the dramatic increase in computing volume that is caused by the continuous application of the transient method in on-site applications and the impact of current transformer accuracy on the steady-state method, this paper proposes corresponding solutions. PSCAD simulation, full-scale tests, and field recording data tests verify that this paper’s method can accurately detect a CTSG.

Funder

Shaanxi Electric Power Co., Ltd., Of State Grid

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3