Research and Implementation of Indoor Positioning Algorithm Based on Bluetooth 5.1 AOA and AOD

Author:

Xiao Kun1,Hao Fuzhong2,Zhang Weijian2,Li Nuannuan3,Wang Yintao1

Affiliation:

1. School of Computer Science and Engineering, University of Electronic Science and Technology, Chengdu 610056, China

2. State Grid Henan Electric Power Company, Zhengzhou 450018, China

3. State Grid Henan Electric Power Research Institute, Zhengzhou 450000, China

Abstract

With the addition of Bluetooth AOA/AOD direction-finding capabilities in the Bluetooth 5.1 protocol and the introduction of antenna array technology into the Bluetooth platform to further enhance positioning accuracy, Bluetooth has gradually become a research hotspot in the field of indoor positioning due to its standard protocol specifications, rich application ecosystem, and outstanding advantages such as low power consumption and low cost compared to other indoor positioning technologies. However, current indoor positioning based on Bluetooth AOA/AOD suffers from overly simplistic core algorithm implementations. When facing different application scenarios, the standalone AOA or AOD algorithms exhibit weak applicability, and they also encounter challenges such as poor positioning accuracy, insufficient real-time performance, and significant effects of multipath propagation. These existing problems and deficiencies render Bluetooth lacking an efficient implementation solution for indoor positioning. Therefore, this paper proposes a study on Bluetooth AOA and AOD indoor positioning algorithms. Through an analysis of the principles of Bluetooth’s newly added direction-finding functionality and combined with research on array signal DOA estimation algorithms, the paper ultimately integrates the least squares algorithm to optimize positioning errors in terms of accuracy and incorporates an anti-multipath interference algorithm to address the impacts of multipath effects in different scenarios. Experimental testing demonstrates that the indoor positioning algorithms applicable to Bluetooth AOA and AOD can effectively mitigate accuracy errors and overcome multipath effects, exhibiting strong applicability and significant improvements in real-time performance.

Funder

State Grid Corporation of China

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3