Abstract
Let G be a connected graph with vertex set V(G) and d(u,v) be the distance between the vertices u and v. A set of vertices S={s1,s2,…,sk}⊂V(G) is called a resolving set for G if, for any two distinct vertices u,v∈V(G), there is a vertex si∈S such that d(u,si)≠d(v,si). A resolving set S for G is fault-tolerant if S\{x} is also a resolving set, for each x in S, and the fault-tolerant metric dimension of G, denoted by β′(G), is the minimum cardinality of such a set. The paper of Basak et al. on fault-tolerant metric dimension of circulant graphs Cn(1,2,3) has determined the exact value of β′(Cn(1,2,3)). In this article, we extend the results of Basak et al. to the graph Cn(1,2,3,4) and obtain the exact value of β′(Cn(1,2,3,4)) for all n≥22.
Subject
General Mathematics,Engineering (miscellaneous),Computer Science (miscellaneous)
Reference11 articles.
1. Leaves of trees;Slater;Congr. Numer.,1975
2. On the metric dimension of a graph;Harary;Ars Comb.,1976
3. The theory and applicatons of resolvability in graphs, A survey;Chartrand;Congr. Numer.,2003
4. Fault-Tolerant metric dimension of graphs;Hernando,2008
5. Fault-Tolerant Metric Dimension of Cube of Paths
Cited by
14 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献