Abstract
Iterative algorithms have been utilized for the computation of approximate solutions of stationary and evolutionary problems associated with differential equations. The aim of this article is to introduce concepts of monotone Reich and Chatterjea nonexpansive mappings on partially ordered Banach spaces. We describe sufficient conditions for the existence of an approximate fixed-point sequence (AFPS) and prove certain fixed-point results using the Krasnoselskii–Ishikawa iterative algorithm. Moreover, we present some interesting examples to highlight the superiority of our results. Lastly, we provide both weak and strong convergence results for such mappings and consider an application of our results to prove the existence of a solution to an initial value problem.
Subject
General Mathematics,Engineering (miscellaneous),Computer Science (miscellaneous)
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. Connected -Chainable Sets and Existence Results;International Journal of Mathematics and Mathematical Sciences;2023-05-18
2. Solving Fractional Differential Equations via Fixed Points of Chatterjea Maps;Computer Modeling in Engineering & Sciences;2023