Abstract
This paper presents a general testing coverage software reliability modeling framework that covers imperfect debugging and considers not only fault detection processes (FDP) but also fault correction processes (FCP). Numerous software reliability growth models have evaluated the reliability of software over the last few decades, but most of them attached importance to modeling the fault detection process rather than modeling the fault correction process. Previous studies analyzed the time dependency between the fault detection and correction processes and modeled the fault correction process as a delayed detection process with a random or deterministic time delay. We study the quantitative dependency between dual processes from the viewpoint of fault amount dependency instead of time dependency, then propose a generalized modeling framework along with imperfect debugging and testing coverage. New models are derived by adopting different testing coverage functions. We compared the performance of these proposed models with existing models under the context of two kinds of failure data, one of which only includes observations of faults detected, and the other includes not only fault detection but also fault correction data. Different parameter estimation methods and performance comparison criteria are presented according to the characteristics of different kinds of datasets. No matter what kind of data, the comparison results reveal that the proposed models generally give improved descriptive and predictive performance than existing models.
Subject
General Mathematics,Engineering (miscellaneous),Computer Science (miscellaneous)
Cited by
10 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献