Author:
Bureneva Olga,Safyannikov Nikolay
Abstract
The human central nervous system is the integrative basis for the functioning of the organism. The basis of such integration is provided by the fact that the same neurons are involved in various sets of sensory, cognitive, and motor functions. Therefore, the analysis of one set of integrative system components makes it possible to draw conclusions about the state and efficiency of the other components. Thus, to evaluate a person’s cognitive properties, we can assess their involuntary motor acts, i.e., a person’s subsensory reactions. To measure the parameters of involuntary motor acts, we have developed a strain gauge measuring system. This system provides measurement and estimation of the parameters of involuntary movements against the background of voluntary isometric efforts. The article presents the architecture of the system and shows the organization of the primary signal processing in analog form, in particular the separation of the signal taken from the strain-gauge sensor into frequency and smoothly varying components by averaging and subtracting the analog signals. This transfer to analog form simplifies the implementation of the digital part of the measuring system and allowed for minimizing the response time of the system while displaying the isometric forces in the visual feedback channel. The article describes the realization of the system elements and shows the results of its experimental research.
Funder
Ministry of Science and Higher Education of the Russian Federation
Subject
Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献