Neural Graph Similarity Computation with Contrastive Learning

Author:

Hu Shengze,Zeng WeixinORCID,Zhang Pengfei,Tang Jiuyang

Abstract

Computing the similarity between graphs is a longstanding and challenging problem with many real-world applications. Recent years have witnessed a rapid increase in neural-network-based methods, which project graphs into embedding space and devise end-to-end frameworks to learn to estimate graph similarity. Nevertheless, these solutions usually design complicated networks to capture the fine-grained interactions between graphs, and hence have low efficiency. Additionally, they rely on labeled data for training the neural networks and overlook the useful information hidden in the graphs themselves. To address the aforementioned issues, in this work, we put forward a contrastive neural graph similarity learning framework, Conga. Specifically, we utilize vanilla graph convolutional networks to generate the graph representations and capture the cross-graph interactions via a simple multilayer perceptron. We further devise an unsupervised contrastive loss to discriminate the graph embeddings and guide the training process by learning more expressive entity representations. Extensive experiment results on public datasets validate that our proposal has more robust performance and higher efficiency compared with state-of-the-art methods.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Reference51 articles.

1. Similarity Search in Biological and Engineering Databases;Kriegel;IEEE Data Eng. Bull.,2004

2. Heterogeneous Graph Matching Networks for Unknown Malware Detection;Wang;Proceedings of the Twenty-Eighth International Joint Conference on Artificial Intelligence, IJCAI 2019,2019

3. Reinforcement Learning–based Collective Entity Alignment with Adaptive Features

4. Towards Entity Alignment in the Open World: An Unsupervised Approach;Zeng;Proceedings of the Database Systems for Advanced Applications—26th International Conference, DASFAA 2021,2021

5. On a relation between graph edit distance and maximum common subgraph

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3