Effect of COVID-19 on Selected Characteristics of Life Satisfaction Reflected in a Fuzzy Model

Author:

Mikołajewski DariuszORCID,Prokopowicz PiotrORCID

Abstract

The general goal of the research in this article is to devise an algorithm for assessing overall life satisfaction—a term often referred to as Quality of Life (QoL). It is aggregated to its own proposition, called personal life usual satisfaction (PLUS). An important assumption here is that the model is based on already known and commonly used solutions, such as medical (psychological and physiotherapeutic) questionnaires. Thanks to this, the developed solution allows us to obtain a synergy effect from the existing knowledge, without the need to design new, complicated procedures. Fuzzy multivariate characterization of life satisfaction presents a challenge for a complete analysis of the phenomenon. The complexity of description using multiple scales, including linguistic, requires additional computational solutions, as presented in this paper. The detailed aim of this study is twofold: (1) to develop a fuzzy model reflecting changes in life satisfaction test scores as influenced by the corona virus disease 2019 (COVID-19) pandemic, and (2) to develop guidelines for further research on more advanced models that are clinically useful. Two groups affected by professional burnout to different degrees were analyzed toward life satisfaction twice (pre- and during pandemy): a study group (physiotherapists, n = 25) and a reference group (computer scientists, n = 25). The Perceived Stress Score (PSS10), Maslach Burnout Inventory (MBI), Satisfaction with Life Scale (SWLS), and Nordic Musculoskeletal Questionnaire (NMQ) were used. The resultant model is based on a hierarchical fuzzy system. The novelty of the proposed approach lies in the combination of the use of data from validated clinimetric tests with the collection of data from characteristic time points and the way in which they are analyzed using fuzzy logic through transparent and scalable hierarchical models. To date, this approach is unique and has no equivalent in the literature. Thanks to the hierarchical structure, the evaluation process can be defined as a modular construction, which increases transparency and makes the whole procedure more flexible.

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3