Abstract
In this study, we report the dosimetric properties of zinc-doped magnesium borate (MgB4O7:Zn) glass, which was originally synthesized. MgB4O7:Zn glass was successfully synthesized through the melt-quenching technique. The amorphous nature of the synthesized samples was observed through X-ray diffraction (XRD) analysis and further confirmed through field emission scanning electron microscopy (FESEM) analysis. The glass-forming ability and thermal stability were estimated to be 0.61 and 1.62, respectively. The TL dosimetric characteristics, i.e., dose response, reproducibility, TL sensitivity, minimum detectable dose and signal stability, are reported. The synthesized sample demonstrated a simple glow curve with a single well-defined dosimetric peak at 240 °C with an optimal heating rate of 7 °C s−1. The synthesized glass demonstrated a linear dose response from 3 Gy to 5 kGy. The promising dosimetric characteristics demonstrate the potential of the synthesized glass to be recommended as a TL dosimeter for a wide range of applications.
Subject
Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献