Effects of Converging Sidewalls on Skimming Flow over Converging Stepped Spillway

Author:

Chen Yuling,Liu Guangyuan,Qian Shangtuo,Xu Hui,Feng Jiangang,Wang Xiaosheng

Abstract

A numerical study is conducted for converging stepped spillways with various spillway slopes, sidewall convergence and flow discharges to understand the influences of converging sidewalls on skimming flows. Compared with the traditional uniform-width stepped spillway, the converging sidewall changes the skimming flow features by generating standing waves on the free-surface, curving the mainstream streamlines and squeezing and distorting the bottom rotations. For free-surface, mainstream and bottom rotations, the width of disturbed regions by the converging sidewall varies, with that for bottom rotations being 1.5 times that for mainstream and 3 times that for free-surface. The variation rules of disturbed region widths along the spillway are obtained, and the maximum widths increase as the convergence angle and incoming flow discharge increase, and the spillway slope decreases. Three equations are established for predicting the maximum widths of disturbed regions for free-surface, mainstream and bottom rotations of skimming flow. Since the disturbed region of skimming flow generated by the converging sidewall is characterized by strong standing waves, high flow velocity and low air concentration, appropriate engineering measurements should be taken for the disturbed region to meet the challenges to overtopping, energy dissipation and cavitation control.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3