In-Silico Characterization of von Willebrand Factor Bound to FVIII

Author:

Drago Valentina,Di Paola LuisaORCID,Lesieur Claire,Bernardini Renato,Bucolo Claudio,Platania Chiara Bianca Maria

Abstract

Factor VIII belongs to the coagulation cascade and is expressed as a long pre-protein (mature form, 2351 amino acids long). FVIII is deficient or defective in hemophilic A patients, who need to be treated with hemoderivatives or recombinant FVIII substitutes, i.e., biologic drugs. The interaction between FVIII and von Willebrand factor (VWF) influences the pharmacokinetics of FVIII medications. In vivo, full-length FVIII (FL-FVIII) is secreted in a plasma-inactive form, which includes the B domain, which is then proteolyzed by thrombin protease activity, leading to an inactive plasma intermediate. In this work, we analyzed through a computational approach the binding of VWF with two structure models of FVIII (secreted full-length with B domain, and B domain-deleted FVIII). We included in our analysis the atomic model of efanesoctocog alfa, a novel and investigational recombinant FVIII medication, in which the VWF is covalently linked to FVIII. We carried out a structural analysis of VWF/FVIII interfaces by means of protein–protein docking, PISA (Proteins, Interfaces, Structures and Assemblies), and protein contact networks (PCN) analyses. Accordingly, our computational approaches to previously published experimental data demonstrated that the domains A3-C1 of B domain-deleted FVIII (BDD-FVIII) is the preferential binding site for VWF. Overall, our computational approach applied to topological analysis of protein–protein interface can be aimed at the rational design of biologic drugs other than FVIII medications.

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3