A Finite Element Model for Monitoring the Displacement of Pipelines in Landslide Regions by Discrete FBG Strain Sensors

Author:

Magisano DomenicoORCID,Mastroianni Marisa,Leonetti LeonardoORCID,Madeo AntonioORCID,Garcea GiovanniORCID,Gagliardi GianfrancoORCID,Casavola AlessandroORCID,Vecchio Giuseppe,Ferrini Francesco,Pierro Alessio,Colloca Roberta,Muraca Emanuel

Abstract

This study investigates a system for monitoring displacements of underground pipelines in landslide-prone regions. This information is an important alarm indicator, not only to prevent the failure of the line itself but also to mitigate the direct consequences of landslides on buildings and infrastructures in the affected area. Specifically, a numerical processing tool coupled with a data acquisition system is proposed. The starting point is the measurement of axial strain at three points of discrete sections of the pipeline by Fiber Bragg grating sensors, used to approximate the trend of mean axial strain and bending curvatures along the pipe axis. A finite element analysis based on a 3D geometrically exact beam model is developed for computing the deformed configuration corresponding to the input strain field. After assigning the boundary conditions, a mixed iterative scheme is used for a quick solution to the nonlinear problem. Firstly, the tool is validated theoretically with benchmarks on beam-like structures undergoing large deflections. Then, experimental results are produced on a monitored pipe buried in a wedge of land subject to an artificial slide. The overall sensor-modeling system, with zero displacements far from the landslide as a boundary condition, provides a satisfactory displacement trend with a mean error of about 18% with just three effective monitored sections in the affected pipe stretch of 18 m. The acquisition and processing tool is implemented in a web application as a real-time alarm system.

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3