Multi-Modal 3D Shape Clustering with Dual Contrastive Learning

Author:

Lin GuotingORCID,Zheng Zexun,Chen Lin,Qin TianyiORCID,Song Jiahui

Abstract

3D shape clustering is developing into an important research subject with the wide applications of 3D shapes in computer vision and multimedia fields. Since 3D shapes generally take on various modalities, how to comprehensively exploit the multi-modal properties to boost clustering performance has become a key issue for the 3D shape clustering task. Taking into account the advantages of multiple views and point clouds, this paper proposes the first multi-modal 3D shape clustering method, named the dual contrastive learning network (DCL-Net), to discover the clustering partitions of unlabeled 3D shapes. First, by simultaneously performing cross-view contrastive learning within multi-view modality and cross-modal contrastive learning between the point cloud and multi-view modalities in the representation space, a representation-level dual contrastive learning module is developed, which aims to capture discriminative 3D shape features for clustering. Meanwhile, an assignment-level dual contrastive learning module is designed by further ensuring the consistency of clustering assignments within the multi-view modality, as well as between the point cloud and multi-view modalities, thus obtaining more compact clustering partitions. Experiments on two commonly used 3D shape benchmarks demonstrate the effectiveness of the proposed DCL-Net.

Funder

National Natural Science Foundation of China

China Postdoctoral Science Foundation

Tianjin Research Innovation Project for Postgraduate Students

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Efficient estimation of the number of clusters for high-dimension data;The Journal of Defense Modeling and Simulation: Applications, Methodology, Technology;2023-12-06

2. Multi-Modal Learning for Predicting the Genotype of Glioma;IEEE Transactions on Medical Imaging;2023-11

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3