Deep Neural Network-Based Prediction and Early Warning of Student Grades and Recommendations for Similar Learning Approaches

Author:

Tao TaoORCID,Sun ChenORCID,Wu Zhaoyang,Yang Jian,Wang Jing

Abstract

Studies reported that if teachers can accurately predict students’ follow-up learning effects via data mining and other means, as per their current performances, and explore the difficulty level of students’ mastery of future-related courses in advance, it will help improve students’ scores in future exams. Although educational data mining and learning analytics have experienced an increase in exploration and use, they are still difficult to precisely define. The usage of deep learning methods to predict academic performances and recommend optimal learning methods has not received considerable attention from researchers. This study aims to predict unknown course grades based on students’ previous learning situations and use clustering algorithms to identify similar learning situations, thereby improving students’ academic performance. In this study, the methods of linear regression, random forest, back-propagation neural network, and deep neural network are compared; the prediction and early warning of students’ academic performances based on deep neural network are proposed, in addition to the improved K-nearest neighbor clustering based on association rules (Pearson correlation coefficient). The algorithm performs a similar category clustering for early-warning students. Using the mean square error, standard deviation, mean absolute percentage error, and prediction of ups-and-downs accuracy as evaluation indicators, the proposed method achieves a steady improvement of 20% in the prediction of ups-and-downs accuracy, and demonstrates improved prediction results when compared under similar conditions.

Funder

the Natural Science Foundation Project of Anhui Province of China

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Cited by 11 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3