Hydrophobic Antiwetting of Aquatic UAVs: Static and Dynamic Experiment and Simulation

Author:

Zheng Yihua,Huang Zhimin,Zhang Chengchun,Wu Zhengyang

Abstract

The adhesion of water to the surfaces of unmanned aerial vehicles (UAVs) adversely affects the function. The proposed UAVs will have underwater as well as flight capability, and these aquatic UAVs must shed water to resume flight. The efficient separation of the adhering water from aquatic-UAV surfaces is a challenging problem; we investigated the application of hydrophobic surfaces as a potential solution. Using aquatic-UAV models, one with hydrophilic surfaces and the other with superhydrophobic anisotropic textured surfaces, the antiwetting mechanism of the hydrophobic surfaces was investigated using a simulated-precipitation system and instrumentation to measure the load of the water adhering to the aquatic UAV, and to measure the impact energies. When the model was stationary (passive antiwetting), no adhesion occurred on the superhydrophobic surfaces, while continuous asymmetric thick liquid films were observed on the hydrophilic surfaces. The superhydrophobic surfaces reduced the rain loading by 87.5%. The vibration and movement of the model (dynamic antiwetting, simulating flight motions) accelerated the separation process and reduced the contact time. The observed results were augmented by the use of computational fluid dynamics with lattice Boltzmann methods (LBM) to analyze the particle traces inside the droplets, the liquid phase velocity-field and pressure-field strengths, and the backward bouncing behavior of the derived droplet group induced by the moving surface. The synergy between the superhydrophobic surfaces and the kinetic energy of the droplets promotes the breakup of drops, which avoids the significant lateral unbalance observed with hydrophilic surfaces during simulated flight.

Funder

the National Key Research and Development Program of China

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3