A Fuzzy Consensus Clustering Algorithm for MRI Brain Tissue Segmentation

Author:

Aruna Kumar S. V.ORCID,Yaghoubi EhsanORCID,Proença HugoORCID

Abstract

Brain tissue segmentation is an important component of the clinical diagnosis of brain diseases using multi-modal magnetic resonance imaging (MR). Brain tissue segmentation has been developed by many unsupervised methods in the literature. The most commonly used unsupervised methods are K-Means, Expectation-Maximization, and Fuzzy Clustering. Fuzzy clustering methods offer considerable benefits compared with the aforementioned methods as they are capable of handling brain images that are complex, largely uncertain, and imprecise. However, this approach suffers from the intrinsic noise and intensity inhomogeneity (IIH) in the data resulting from the acquisition process. To resolve these issues, we propose a fuzzy consensus clustering algorithm that defines a membership function resulting from a voting schema to cluster the pixels. In particular, we first pre-process the MRI data and employ several segmentation techniques based on traditional fuzzy sets and intuitionistic sets. Then, we adopted a voting schema to fuse the results of the applied clustering methods. Finally, to evaluate the proposed method, we used the well-known performance measures (boundary measure, overlap measure, and volume measure) on two publicly available datasets (OASIS and IBSR18). The experimental results show the superior performance of the proposed method in comparison with the recent state of the art. The performance of the proposed method is also presented using a real-world Autism Spectrum Disorder Detection problem with better accuracy compared to other existing methods.

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3