Fault Diagnosis Method Based on Time Series in Autonomous Unmanned System

Author:

Xu ZhuoranORCID,Wang Manyi,Li QianmuORCID,Qian Linfang

Abstract

There are various types of autonomous unmanned systems, covering different spaces of sea, land, and air, and they are comprehensively going deep into multiple fields of national security and social life. Due to the development of technology, the scale of unmanned systems is getting larger and larger, the number of components in the system is increasing, and the operating environment of the system is also becoming more and more complex. Therefore, the probability of failure of the components of the system will also be significantly increased. In order to eliminate the impact of the fault in time, the fault diagnosis method is significant. Considering the differences of components in autonomous unmanned systems, if a specific fault diagnosis algorithm is designed for each type of component, it will bring difficulties to the coordinated control of the system. Therefore, this paper analyzes the data characteristics of unmanned autonomous system devices (such as sensors) and finds that these data have time series. Therefore, the data of different devices can be converted into time series, and a general fault diagnosis algorithm suitable for most devices can be studied. The fault diagnosis algorithm is based on the clustering algorithm. In order to improve the clustering effect, the time series of different devices are represented by Gaussian mixture clustering to reduce the computational complexity of the clustering calculation. Then, a time series similarity measurement method based on the improved Markov chain is proposed. This method can better distinguish normal samples from abnormal samples so as to classify and identify faults effectively.

Funder

Fundamental Research Funds for the Central Universities

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Reference28 articles.

1. Fault-tolerant control approach for multi-agent systems with multiple failures;Liu;J. Hangzhou Dianzi Univ. (Nat. Sci.),2022

2. Fault tolerant control scheme design for formation flight control system of multiple unmanned aerial vehicles;Qian;Trans. Nanjing Univ. Aeronaut. Astronaut.,2018

3. An Unmanned Inspection System for Multiple Defects Detection in Photovoltaic Plants

4. Unmanned aerial vehicle rotor fault diagnosis based on interval sampling reconstruction of vibration signals and a one-dimensional convolutional neural network deep learning method

5. A Transfer Learning Based Unmanned Aerial Vehicle MEMS Inertial Sensors Fault Diagnosis Method

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3