Semantic Segmentation of Agricultural Images Based on Style Transfer Using Conditional and Unconditional Generative Adversarial Networks

Author:

Madokoro Hirokazu,Takahashi Kota,Yamamoto Satoshi,Nix Stephanie,Chiyonobu Shun,Saruta Kazuki,Saito Takashi K.,Nishimura Yo,Sato Kazuhito

Abstract

Classification, segmentation, and recognition techniques based on deep-learning algorithms are used for smart farming. It is an important and challenging task to reduce the time, burden, and cost of annotation procedures for collected datasets from fields and crops that are changing in a wide variety of ways according to growing, weather patterns, and seasons. This study was conducted to generate crop image datasets for semantic segmentation based on an image style transfer using generative adversarial networks (GANs). To assess data-augmented performance and calculation burdens, our proposed framework comprises contrastive unpaired translation (CUT) for a conditional GAN, pix2pixHD for an unconditional GAN, and DeepLabV3+ for semantic segmentation. Using these networks, the proposed framework provides not only image generation for data augmentation, but also automatic labeling based on distinctive feature learning among domains. The Fréchet inception distance (FID) and mean intersection over union (mIoU) were used, respectively, as evaluation metrics for GANs and semantic segmentation. We used a public benchmark dataset and two original benchmark datasets to evaluate our framework of four image-augmentation types compared with the baseline without using GANs. The experimentally obtained results showed the efficacy of using augmented images, which we evaluated using FID and mIoU. The mIoU scores for the public benchmark dataset improved by 0.03 for the training subset, while remaining similar on the test subset. For the first original benchmark dataset, the mIoU scores improved by 0.01 for the test subset, while they dropped by 0.03 for the training subset. Finally, the mIoU scores for the second original benchmark dataset improved by 0.18 for the training subset and 0.03 for the test subset.

Funder

Japan Society for the Promotion of Science

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3