Abstract
The smart grid (SG) is an integration of a traditional power grid with advanced information and communication infrastructure for a large number of electrical applications. Despite all these advantages that the SG will bring, certain issues arise when designing a high-quality SG communication network. One of the critical challenges is that the existing routing strategies in smart power grids are incapable of guaranteeing differentiated QoS requirements considering the network dynamics. To address this limitation, we propose an SDN routing algorithm called the QoS-guaranteed and congestion-controlled OpenFlow routing strategy (QCORS) to satisfy the various communication demands by utilizing the flexibility of SDN. Gaining from its open and programmable idea in SDN, the proposed strategy is expected to divide the link into different congestion levels based on predicting the future congestion status from transmission links. Then packets are expected to be transmitted to routers through links under lower load conditions. The simulation results have demonstrated that the proposed method can reduce the average peer-to-peer delay of all the vocational flow and guarantee the reliability of the network.
Funder
National Natural Science Foundation of China
local science and technology developing fundation guided by central goverment
Subject
Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science
Cited by
7 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献