Occurrence Characteristics of Inorganic Nitrogen in Groundwater in Silty-Clay Riparian Hyporheic Zones under Tidal Action: A Case Study of the Jingzi River in Shanghai, China

Author:

Cai Yi,Xing Jingwen,Huang Ruoyao,Ruan Xike,Zhou Nianqing,Yi Dongze

Abstract

For comprehending the effect of tidal action on nitrogen cycle in silty-clay riparian hyporheic zones, the synchronous monitoring of water level and water quality was carried out along a test transect during a spring tidal period from 21 to 23 October 2021. Moreover, the permeability and chemical composition of soil samples from drilled holes were measured. Subsequently, the spatiotemporal variation of inorganic nitrogen concentrations in the groundwater in the riparian hyporheic zone was investigated during the study period, and the potential reason was discussed. It is shown that the delayed response time of groundwater level in the silty-clay riparian zone to the tide-driven fluctuation of the river stage increased with distance from the shore and reached 3.0 h at the position 3.83 m away from the shore. The continuous infiltration of the river water under tide action contributed to the aerobic and neutral riparian hyporheic zone conductive to nitrification. Within 4 m away from the bank, the dominant inorganic nitrogen form changed from NO3−-N to NH4+-N, upon increasing the distance from the bank. Additionally, the removal of nitrogen could occur in the riparian hyporheic zone with aerobic and neutral environment under the conjoint control of nitrification, microbial assimilation, and aerobic denitrification.

Funder

National Natural Science Foundation of China

Natural Science Foundation of Shanghai

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3