An Improved Robust Fractal Image Compression Based on M-Estimator

Author:

Huang Penghe,Li Dongyan,Zhao Huimin

Abstract

In this paper, a robust fractal image compression method based on M-estimator is presented. The proposed method applies the M-estimator to the parameter estimation in the fractal encoding procedure using Huber and Tukey’s robust statistics. The M-estimation reduces the influence of the outliers and makes the fractal encoding algorithm robust to the noisy image. Meanwhile, the quadtree partitioning approach has been used in the proposed methods to improve the efficiency of the encoding algorithm, and some unnecessary computations are eliminated in the parameter estimation procedures. The experimental results demonstrate that the proposed method is insensitive to the outliers in the noisy corrupted image. The comparative data shows that the proposed method is superior in both the encoding time and the quality of retrieved images over other robust fractal compression algorithms. The proposed algorithm is useful for multimedia and image archiving, low-cost consumption applications and progressive image transmission of live images, and in reducing computing time for fractal image compression.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Reference58 articles.

1. Iterated function systems and the global construction of fractals;Barnsley;Proc. R. Soc. A Math. Phys. Eng. Sci.,1985

2. Image coding based on a fractal theory of iterated contractive image transformations

3. Fractal Everywhere;Barnsley,1993

4. Fractal Image Compression Theory and Appplication;Fisher,1995

5. Fractal image compression using visual-based particle swarm optimization;Tseng;Image Vis. Comput.,2008

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3