Effect of the Cadmium Telluride Deposition Method on the Covering Degree of Electrodes Based on Copper Nanowire Arrays

Author:

Panaitescu Ana-MariaORCID,Antohe IuliaORCID,Locovei ClaudiuORCID,Iftimie SorinaORCID,Antohe ŞtefanORCID,Piraux LucORCID,Suchea Mirela PetrutaORCID,Antohe Vlad-AndreiORCID

Abstract

In this work, we report the preparation of nanostructured electrodes based on dense arrays of vertically-aligned copper (Cu) nanowires (NWs) to be subsequently covered by cadmium telluride (CdTe) thin films, with great potential to be used within “substrate”-type photovoltaic cells based on AII-BVI heterojunctions. In particular, the multi-step preparation protocol presented here involves an electrochemical synthesis procedure within a supported anodic aluminum oxide (AAO) nanoporous template for first generating a homogeneous array of vertically-aligned Cu NWs, which are then further embedded within a compact CdTe thin film. In a second stage, we tested three deposition methods (vacuum thermal evaporation, VTE; radio-frequency magnetron sputtering, RF-MS; and electrochemical deposition, ECD) for use in obtaining CdTe layers potentially able to consistently penetrate the previously prepared Cu NWs array. A comparative analysis was performed to critically evaluate the morphological, optical, and structural properties of the deposited CdTe films. The presented results demonstrate that under optimized processing conditions, the ECD approach could potentially allow the cost-effective fabrication of absorber layer/collecting electrode CdTe/Cu nanostructured interfaces that could improve charge collection mechanisms, which in turn could allow the fabrication of more efficient solar cells based on AII-BVI semiconducting compounds.

Funder

"Executive Unit for Financing Higher Education, Research, 473 Development and Innovation" - UEFISCDI (Romania) as well as by the "Fonds de la Recherche Scientifique" - FNRS

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3