Abstract
A smart city is a sustainable and effectual urban center which offers a maximal quality of life to its inhabitants with the optimal management of their resources. Energy management is the most difficult problem in such urban centers because of the difficulty of energy models and their important role. The recent developments of machine learning (ML) and deep learning (DL) models pave the way to design effective energy management schemes. In this respect, this study introduces an artificial jellyfish optimization with deep learning-driven decision support system (AJODL-DSSEM) model for energy management in smart cities. The proposed AJODL-DSSEM model predicts the energy in the smart city environment. To do so, the proposed AJODL-DSSEM model primarily performs data preprocessing at the initial stage to normalize the data. Besides, the AJODL-DSSEM model involves the attention-based convolutional neural network-bidirectional long short-term memory (CNN-ABLSTM) model for the prediction of energy. For the hyperparameter tuning of the CNN-ABLSTM model, the AJO algorithm was applied. The experimental validation of the proposed AJODL-DSSEM model was tested using two open-access datasets, namely the IHEPC and ISO-NE datasets. The comparative study reported the improved outcomes of the AJODL-DSSEM model over recent approaches.
Funder
King Khalid University
Princess Nourah bint Abdulrahman University
Umm al-Qura University
Majmaah University
Subject
Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science
Cited by
8 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献