A Lightweight Crop Pest Detection Method Based on Convolutional Neural Networks

Author:

Cheng Zekai,Huang RongqingORCID,Qian Rong,Dong Wei,Zhu Jingbo,Liu Meifang

Abstract

Existing object detection methods with many parameters and computations are not suitable for deployment on devices with poor performance in agricultural environments. Therefore, this study proposes a lightweight crop pest detection method based on convolutional neural networks, named YOLOLite-CSG. The basic architecture of the method is derived from a simplified version of YOLOv3, namely YOLOLite, and k-means++ is utilized to improve the generation process of the prior boxes. In addition, a lightweight sandglass block and coordinate attention are used to optimize the structure of residual blocks. The method was evaluated on the CP15 crop pest dataset. Its detection precision exceeds that of YOLOv3, at 82.9%, while the number of parameters is 5 million, only 8.1% of the number used by YOLOv3, and the number of computations is 9.8 GFLOPs, only 15% of that used by YOLOv3. Furthermore, the detection precision of the method is superior to all other commonly used object detection methods evaluated in this study, with a maximum improvement of 10.6%, and it still has a significant edge in the number of parameters and computation required. The method has excellent pest detection precision with extremely few parameters and computations. It is well-suited to be deployed on equipment for detecting crop pests in agricultural environments.

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. An Optimized Lightweight Crop Pest Detection Method;2023 4th International Conference on Big Data, Artificial Intelligence and Internet of Things Engineering (ICBAIE);2023-08-25

2. Pepper leaf disease recognition based on enhanced lightweight convolutional neural networks;Frontiers in Plant Science;2023-08-09

3. Crop Pests Identification based on Fusion CNN Model: A Deep Learning;2023 8th International Conference on Communication and Electronics Systems (ICCES);2023-06-01

4. Lightweight tomato real-time detection method based on improved YOLO and mobile deployment;Computers and Electronics in Agriculture;2023-02

5. MDP-YOLO: A LIGHTWEIGHT YOLOV5S ALGORITHM FOR MULTI-SCALE PEST DETECTION;Engenharia Agrícola;2023

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3